

mrbait: Universal identification and design of targeted-enrichment capture probes

mrbait [https://github.com/tkchafin/mrbait] is a software pipeline for identifying regions of interest in DNA
sequence data and designing probes to enrich them.

The motivation behind mrbait is ease and flexibility of use. As such, mrbait
allows a variety of input types and facilitates a diverse array of bait design
approaches, such as those targeting ultraconserved elements, RAD-capture methods,
or those targeting exons or other genomic elements. mrbait also enables fast and
efficient iterative design (e.g. to explore parameter settings) using native
Python parallelization and an SQL database back-end. In this documentation, you
can learn about the overall process employed by mrbait (Pipeline overview),
how to install mrbait for use on a personal desktop or remote workstation or HPC
(Getting Started), see a full description of all runtime options
(Running mrbait), and see walltime and memory benchmarking results (Benchmarking)

mrbait [https://github.com/tkchafin/mrbait] code is open-source and freely available at on GitHub [https://github.com/tkchafin/mrbait]

Official releases can be found here [https://github.com/tkchafin/mrbait/releases]

Having issues running or installing mrbait [https://github.com/tkchafin/mrbait]? Contact me at tkchafin@uark.edu
or post an Issue on the GitHub page [https://github.com/tkchafin/mrbait/issues].

	Citation: Chafin TK, Douglas MR, Douglas ME (2018) MrBait: Universal

	identification and design of targeted-enrichment capture probes.
Bioinformatics. https://doi.org/10.1093/bioinformatics/bty548

Software and documentation provided under the GNU Public License v3.0 and distributed
“as is” without warranty of any kind.

	Introduction
	Pipeline Description

	Getting Started
	Availability

	Dependencies

	Installation

	Running mrbait

	Input files
	Assembled genomes

	Multiple genome alignments

	Reduced representation data

	Usage options
	Main Parameters

	Filtering using vsearch

	Filtering using blast

	Output Files

	Benchmarking and Hardware Requirements
	Runtime scaling

	Memory Usage

	Acknowledgements

	References

	Pipeline Description

	Getting Started
	Availability

	Dependencies

	Installation

	Running mrbait

	Input files
	Assembled genomes
	Annotating genomes with VCF

	Annotating genomes with GFF

	Multiple genome alignments

	Reduced representation data

	Usage options
	Main Parameters
	General options

	Input Options

	Alignment filtering/ consensus options (use with -M, -X, -L)

	General Bait Design Options

	Target Region Options

	Bait Selection Options

	Output Options

	Filtering using vsearch
	vsearch Options

	Graph-based conflict resolution

	Filtering using blast

	Output Files

	Benchmarking and Hardware Requirements
	Runtime scaling

	Memory Usage

	Acknowledgements

	References

Indices and tables

	Index

	Module Index

	Search Page

Introduction

mrbait [https://github.com/tkchafin/mrbait] is a software pipeline for identifying regions of interest in DNA
sequence data and designing probes to enrich them.

A variety of genome reduction methods have been implemented to reduce costs of
applying next-generation sequencing methods to non-model organisms, or projects
with large numbers of samples (e.g. those focusing on the population scale). These
can broadly be classified into those which use restriction enzymes and size selection
for subsampling genomic complexity [e.g. RADseq methods (Baird et al., 2008;
Peterson et al., 2012)], and those which enrich for fragments selected a priori
using biotinylated RNA ‘baits’ (Lemmon et al., 2012; McCormack et al., 2012). The
latter benefit from increased specificity, yet require some genomic information
for marker development. To mitigate, some take a hybrid approach by using baits to
enrich RAD loci which are most consistently recovered, or to maximize capture of
parsimony-informative variation (Ali et al., 2016; Hoffberg et al., 2016).

Applying these targeted-enrichment methods (either via RAD-capture methods,
ultra-conserved elements, or anchored-enrichment) requires first bioinformatic
processing to parse large alignments, identify candidate regions for bait-design,
and design of complementary oligonucleotide sequences for synthesis. Although some
developers are transparent in providing computational resources and workflows to
design such probe sets (e.g. see Faircloth 2017), a generalized and flexible pipeline
does not yet exist. The motivation behind MrBait was to provide such a resource,
which could be universally applied to differing bait enrichment strategies (e.g.
targeting ultra-conserved regions vs. functional elements), and facilitate diverse
quality control methods to mitigate non-target capture (contamination, etc),
target-target hybridization, ambiguous mapping, and enrichment of repetitive DNA.

mrbait [https://github.com/tkchafin/mrbait] code is open-source and freely available at on GitHub [https://github.com/tkchafin/mrbait]

Official releases can be found here [https://github.com/tkchafin/mrbait/releases]

	Pipeline Description

	Getting Started
	Availability

	Dependencies

	Installation

	Running mrbait

	Input files
	Assembled genomes
	Annotating genomes with VCF

	Annotating genomes with GFF

	Multiple genome alignments

	Reduced representation data

	Usage options
	Main Parameters
	General options

	Input Options

	Alignment filtering/ consensus options (use with -M, -X, -L)

	General Bait Design Options

	Target Region Options

	Bait Selection Options

	Output Options

	Filtering using vsearch
	vsearch Options

	Graph-based conflict resolution

	Filtering using blast

	Output Files

	Benchmarking and Hardware Requirements
	Runtime scaling

	Memory Usage

	Acknowledgements

	References

Pipeline Description

The general process (summarized in figure below) is built on a relational database in
SQLite, populated, accessed, and parsed in Python. It takes a variety of input file
formats, and is written modularly such that adding additional capabilities (e.g. input
file formats, filtering schema) can be done without too much difficulty. The workflow is
divided into 5 steps, as follows:

	Alignments (provided as .xmfa, .loci, or .maf) or genomes (provided as .fasta, annotated with .vcf or .gff) will be used to build a consensus sequence of each locus.

	A sliding window will be applied to each consensus to find candidate targets for which baits could be designed

	Targets are then selected (if too close together, or only one allowed per locus), and filtered according to any number of specified filter (e.g. GC content, flanking SNPs, pairwise alignment)

	Passing targets are then parsed to design a putative set of baits

	Baits are then filtered according to selected criteria, and output as FASTA.

	The pipeline can be resumed and any steps iteratively re-visited by providing the SQLite database file (resulting in a significant reduction in runtime for successive runs)

[image: _images/pipeline.png]

Getting Started

mrbait [https://github.com/tkchafin/mrbait] has been tested on Mac and Linux operating systems and is primarily supported on
those platforms. However, Windows users can easily install using the built-in
Linux subsystem for Windows 10.

In-development code can be found on the Github page: https://github.com/tkchafin/mrbait

If you find any issues with the program, please email me at tkchafin@uark.edu or
submit as an issue on Github [https://github.com/tkchafin/mrbait/issues], which can
also be used for submitting feature requests. When submitting bugs or issues, please
include input files, your command-line call, and any output MrBait produced to the screen
or output files.

Availability

Functioning releases can be found at:
https://github.com/tkchafin/mrbait/releases

Source code: https://github.com/tkchafin/mrbait

conda package: https://anaconda.org/tylerkchafin/mrbait

Dependencies

mrbait [https://github.com/tkchafin/mrbait] is written for Python3, and requires Python version >= 3.6.0. The recommended
method of acquiring Python and all other dependencies is via the Anaconda distribution,
as outlined in Section 3.3. A full list of dependencies is given below.

	Python [https://www.python.org/] >= 3.6

	SQLite3 [https://www.sqlite.org/index.html]

	BioPython [http://biopython.org/]

	Pandas [http://pandas.pydata.org/] >=0.22

	numpy [http://www.numpy.org/]

	pyVCF [https://pyvcf.readthedocs.io]

	networkx [https://networkx.github.io/]

mrbait can optionally use the following programs during bait development:

	blast [https://blast.ncbi.nlm.nih.gov/Blast.cgi]

	vsearch [https://github.com/torognes/vsearch]

For these utilities, please cite the following:
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009.
BLAST+: architecture and applications. BMC Bioinformatics. 1-:410. Doi:10.1186/1471-2105-10.421

Rognes R, Flouri T, Nichols B, Quince C, Mahe F. 2016. VSEARCH: A versatile and open
source tool for metagenomics. PeerJ. 4:e2584. Doi: 10.7717/peerj.2584

Installation

By far the easiest way to acquire and install mrbait [https://github.com/tkchafin/mrbait] is via conda [http://docs.continuum.io/conda/], a command line interface
for managing and installing packages. Download and install anaconda [http://docs.continuum.io/anaconda/install.html] for Python 3.6 here:
https://www.anaconda.com/download/. If you are wanting a minimal environment, or a faster
install, you can also use the Miniconda distribution (https://conda.io/miniconda.html) with
the same commands. After installation, be sure to test that conda is installed by typing
conda info, which will print information about your installation. Note, you may first need
to reload your bash environment by typing source ~/.bashrc or source ~/.bash_profile on Mac.
Assuming success, the installation process is then very straightforward:

#This command tells conda that the code and dependencies for mrbait can
#be found in ‘channels’ bioconda, conda-forge, and tylerkchafin.
conda install mrbait -c tylerkchafin -c bioconda -c conda-forge

#If you would like to instead install the latest development version, you can
#clone the github repository and
#install MrBait like so (assuming you have git installed):
git clone https://github.com/tkchafin/mrbait.git
cd mrbait
python ./setup.py install

You will then need to manually install both vsearch [https://github.com/torognes/vsearch] and blast [https://blast.ncbi.nlm.nih.gov/Blast.cgi], only if you install
directly from the GitHub source using the setup.py installation. These will be installed
for you if you used conda [http://docs.continuum.io/conda/].

Windows users: MrBait is installable using the built-in Linux subsystem for Windows 10.
I have only tested using the Ubuntu OS subsystem configuration but assume that other Linux
distros would work equally well. If you prefer, you can also use a Linux installation on a
virtual machine, or installed portably on a USB-attached drive [https://tutorials.ubuntu.com/tutorial/tutorial-create-a-usb-stick-on-ubuntu#0], although
this may impact performance. Contact me at tkchafin@uark.edu if you have any issues getting
mrbait [https://github.com/tkchafin/mrbait] installed, or feel free to launch an ‘Issue’ on the GitHub page.

HPC users: One of the reasons I recommend using conda to manage your Python environment,
is that it keeps your packages separate from the system environment, which you often will not
have permissions to modify. Anaconda will instead install your own local flavor of Python in
your home directory, where is will also install any additional packages you choose to add.

BLAST and VSEARCH: conda will also install both BLAST and VSEARCH and place them within
your conda environment. If you would like to manually manage versions of these programs, or
use an existing installation, you can provide the paths to those binaries using the –vsearch
and –blastn commands for mrbait [https://github.com/tkchafin/mrbait].

Running mrbait [https://github.com/tkchafin/mrbait]

Assuming you have completed the recommended conda [http://docs.continuum.io/conda/] install, mrbait [https://github.com/tkchafin/mrbait] and it’s Dependencies
should already be in your path and is now fully ready to go. You can verify successful
installation, and view the help menu, by typing:
mrbait -h

Instructions for bait design are provided as arguments (see Section 5 for thorough usage
instructions, and Section 8 for tutorials). For example, to generate baits of length
80, tiled across target regions with an overlap of 40 bases, from a Multiple Alignment
File (MAF) “example.maf”:

mrbait -M example.maf -b 80 -s tile=40

Or, to also filter for only alignments including 5 or more individuals, and
of length >500:

mrbait -M example.maf -b 80 -s tile=40 -l 500 -c 5

Input files

This section describes the input file types accepted by MrBait.

Assembled genomes

mrbait [https://github.com/tkchafin/mrbait] only accepts genome assemblies formatted as FASTA. These can represent
contigs, scaffolds, or entire chromosomes. According to the FASTA specifications,
a sequence should begin with a header line, or short description (indicated by the
“>” symbol), followed by a second line containing sequence data. It does
not matter if the following lines are interleaved or on a single line, and any blank
lines in the file will be ignored, as will any leading or trailing whitespace.

An example FASTA-formatted sequence is given below.

	1
2
3
4
5
6
7
8
9

	>chr1.scaffold1
ATAGCTCGGCTACGTGATCGCGTGCTC-ATGCTAGCGCTNNNNNNNNATGATTGCTTTT
TGTGTGTGCAAGCACTGCCGRGCTACGCGCTACTGCCRCCTAGTATGTGTGGCCGCTAC
TAGTCCGCGCTAGCTtTtagatctcgtggcgccgcgcgcgtcgcacgatcgtacgcgcc
>chr1.scaffold2
ATCGTGCTGCGGCGCTGCCTCAGC…
…
…
…

Annotating genomes with VCF

mrbait [https://github.com/tkchafin/mrbait] also supports supplementing genomic sequences with coordinate-reference SNP
data (e.g. obtained from population-level sequencing) using the Variant Call Format [http://samtools.github.io/hts-specs/]:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	##fileformat=VCFv4.2
##FORMAT=<ID=GT,Number=1,Type=Integer,Description="Genotype">
##FORMAT=<ID=GP,Number=G,Type=Float,Description="Genotype Probabilities">
##FORMAT=<ID=PL,Number=G,Type=Float,Description="Phred-scaled Genotype Likelihoods">
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT SAMP001 SAMP002
chr1.scaffold1 48 rs11449 G A . PASS . GT 0/0 0/1
chr1.scaffold1 47 rs11449 T A . PASS . GT 0/0 0/1
chr1.scaffold2 1 rs84825 A T . PASS . GT:GP 0/1:. 0/1:0.03,0.97,0
…
…

It is important to note that the VCF format can communicate much more information
than mrbait [https://github.com/tkchafin/mrbait] will utilize. The CHROM and POS columns will be parsed to locate the
reference position for each SNP, and the REF and ALT columns to write a new consensus
base at that position using IUPAC ambiguity codes (e.g. C/T = Y). More functionality
will be added in future versions of mrbait [https://github.com/tkchafin/mrbait].

It is highly recommended you add variant data if it is available, as it will be used
both for finding adequately conserved regions for bait design, as well as for filtering
target regions for those which capture flanking SNPs.

NOTE: When using VCF, the REF column is ignored. Instead, the reference allele will be
taken from the FASTA reference provided. For cases when the reference allele is an N or
gap (-), you can choose to either retain the N/gap allele, OR attempt to override it
using the ALT alleles provided in the VCF for that position (–vcfALT)

Annotating genomes with GFF

mrbait [https://github.com/tkchafin/mrbait] can also make use of genomic features provided using the Generic Feature Format (GFF),
independently or in addition to any variant data provided via VCF. mrbait assumes that input
GFF files follow the version 3 GFF specification <https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md>_:

	1
2
3
4
5
6

	##gff-version 3
chr1.scaffold1 . gene 10 180 . + . ID=gene0001;Alias=targets
chr1.scaffold1 . mRNA 20 180 . + . ID=mrna0001;Parent=gene0001
chr1.scaffold1 . exon 10 128 . + . ID=tfbs00001;Parent=gene0001
…
…

Columns should be separated by tabs and defined according to the GFF3 standard (e.g.
column 1 contains the sequence ID). mrbait will use the sequence ID (column 1) to map
coordinates in GFF columns 4 and 5 to the reference provided in your FASTA file, thus
these identifiers must be identical. mrbait will also categorize features internally by
the type (e.g. “exon”) given in column 3, and by any alias assigned in the attributes
column (column 9). All other columns are ignored. You can use either type or alias to
tell mrbait [https://github.com/tkchafin/mrbait] to target those features for bait design.

If you are not targeting all of a single type (e.g. CDS, or exon), you can either pre-filter
your GFF file prior to loading, or you can annotate features of interest using the Alias
attribute.

Multiple genome alignments

mrbait [https://github.com/tkchafin/mrbait] reads two different input file types for multiple genome alignments. These can
be provided using the Multiple Alignment Format (MAF [https://genome.ucsc.edu/FAQ/FAQformat.html#format9.3]), or the eXtended Multi-FastA (XMFA [https://asap.genetics.wisc.edu/software/mauve/mauve-user-guide/mauve-output-file-formats.php]) formats.

The MAF format is output by several multiple alignment programs, including MAFFT [https://mafft.cbrc.jp/alignment/software/]
and Mugsy [http://mugsy.sourceforge.net/], and take the following general form:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	##maf version=1 scoring=tba.v8
tba.v8 (((human chimp) baboon) (mouse rat))
multiz.v7
maf_project.v5 _tba_right.maf3 mouse _tba_C
single_cov2.v4 single_cov2 /dev/stdin

a score=5062.0
s hg16.chr7 27699739 6 + 158545518 RAAAGAGATGCTAAGCCAATGAGTTGATGTCTCTCAATGTGTG
s panTro1.chr6 28862317 6 + 161576975 RAAAGAGATGCTAAGCCAATGAGTTGTTGTCTCTCAATGTGTG
s baboon 241163 6 + 4622798 TAAAGAGATGCTAAGCCAATGAGTTGTTGTCTCTRAATGTGTG
s mm4.chr6 53303881 6 + 151104725 TAAAGAGATGCTAAGCCAATGAGTTGTTGTCGCTCAATGTGTG
s rn3.chr4 81444246 6 + 187371129 taaggaGATGCTAAGCCAATGAGTTGTTGTCGCTCAATGTGTG

…
…
…

Comment lines (starting with “#”) are ignored by mrbait [https://github.com/tkchafin/mrbait]. Alignment blocks (considered
by mrbait [https://github.com/tkchafin/mrbait] to each represent different loci) are started with “a”, followed by sequence
lines starting with “s”. Source, strand, and coordinate positions are not informative for
mrbait [https://github.com/tkchafin/mrbait], nor are lines starting with other letters (which can be used in the MAF
format to communicate additional information about the preceding sequence, such as
quality scores).

The eXtended Multi-FastA (XMFA) format output by the multiple-genome aligner
MAUVE (which outputs it as “.alignment”) is an extension of the standard FASTA format
to allow alignment blocks from many different loci, with header lines representing
identifiers for the aligned sequence, and start-end coordinates representing the alignment
block location within the genome, followed by the sequence:

	1
2
3
4
5
6
7
8
9

	>1:1-230 +
ATAGC-NAATC--GC…
>2:210-440 -
ATTGGCCAATCCCC…
>3:3-230 +
TTA-CCAAGC--GC…
=
…
…

Alignment blocks are delimited by the “=” symbol. All alignment blocks are assumed
by mrbait [https://github.com/tkchafin/mrbait] to represent separate, discontinuous loci. Note that because
no individual ‘alignment block’ in the .xmfa file is guaranteed to contain the same
genome representatives, no reference coordinates are saved by mrbait. This means
that additional annotation via GFF or VCF cannot be added to whole-genome alignments
provided in .xmfa format.

Reduced representation data

Alignments from reduced-representation methods such as restriction-site associate
DNA sequencing methods (RADseq) can be input using the MAF or XMFA formats, or using
the “.loci” format output by the RADseq assembly pipeline pyrad [https://github.com/dereneaton/pyrad] or
its successor ipyrad [https://github.com/dereneaton/ipyrad]. This format shows individual
loci delimited by a line starting with “//” which features additional annotation of
variants and parsimony-informative sites:

	1
2
3
4
5
6
7
8

	>PopA001 GTGTGATAGTAGTGATGTATTTTATAATATATATTATCGGATAT……
>PopA002 GTGTGARAGTAGTGATGTATTTTATAATATATATTATCGGATAT……
>PopB001 GTGTGACAGTAGTGATGTATTTTATAATATATATTATCGGATAT……
>PopB002 GAGTGATAGTAGTGATGTATTTTATAATATATATTATCGGATAT……
// * * |1
…
…
…

mrbait ignores annotation information (since it parses variants anyways to generate
a consensus sequence), and only uses the “//” delimiter to distinguish between alignment
blocks. Creating a .loci file from other formats can be accomplished relatively easily.
For example, a series of separate alignments (each as .fasta), could be converted to the
.loci format using the following bash command:

for file in `ls example*.fasta`; do
 awk 'BEGIN{ORS=""}$1~/^\>/{print $01"\t";next}{print $0"\n"}' $file
 >> example.loci;
 echo "//" >> example.loci;
done

Usage options

mrbait [https://github.com/tkchafin/mrbait] reads all options and inputs using command-line arguments provided
after the program name. For a quick look at all options from the command line,
call the help menu by typing mrbait -h from the terminal.

Note that options requiring a floating point number (e.g. -q) allow inputs
from 0.0 to 1.0, and options requiring an integer (e.g. -c) allow inputs ranging
from 1 to infinity.

Main Parameters

General options

	-r, --resume

	Resume: This flag is used to tell mrbait if you would like to resume work
following a particular step. Use this option in conjunction with the
–db flag to continue the pipeline if you would like to re-perform
filtering steps without needing to re-load and parse alignments

 Output Files

Output Files

Final output of baits will be formatted as FASTA and named $out_baits.fasta
(where $out is defined using the -o/–out flag). When the -t/–print_tr option is in
use, targets will also be output as $out_targets.fasta, with an additional field
in the header indicating if these targets passed or failed target selection and filtering.

By default, baits are reported with any ambiguity sequences included (e.g. as a
consensus sequence) like so:

	1
2
3
4
5
6
7

	>Locus1_Target4_Bait1
ATGTAATRAGGTATATG……
>Locus1_Target4_Bait2
TATGAATGTCGCGCGAT……
…
…
…

If using the -x/–expand option, ambiguities will be reported as all combinations, like so:

	1
2
3
4
5
6
7
8
9

	>Locus2_Target4_Bait1.1
ATGTAATAAGGTATATG……
>Locus2_Target4_Bait1.1
ATGTAATGAGGTATATG……
>Locus1_Target4_Bait2.1
TATGAATGTCGCGCGAT……
…
…
…

Baits can also be printed as reverse complement. For example, if the –expand option was
specified, in addition to –strand both:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	>Locus2_Target4_Bait1.1
ATGTAATAAGGTATATG……
>Locus2_Target4_Bait1.1_revcomp
TACATTATTCCATATAC……
>Locus2_Target4_Bait1.1
ATGTAATGAGGTATATG……
>Locus2_Target4_Bait1.1_revcomp
TACATTACTCCATATAC ……
>Locus1_Target4_Bait2.1
TATGAATGTCGCGCGAT……
>Locus1_Target4_Bait2.1_revcomp
ATACTTACAGCGCGCTA……
…
…

mrbait [https://github.com/tkchafin/mrbait] will also produce a .sqlite file (e.g. $out.sqlite) which can be used with
the –resume flag to restart the pipeline at different stages- for example to
re-perform bait filtering with different options. This stores the complete database,
including all consensus loci parsed from the alignment input files, all targets, and
all bait sequences (including those which failed filtering) and can be used independently
with your own SQLite queries.

 Benchmarking and Hardware Requirements

Benchmarking and Hardware Requirements

Use of an HPC or powerful workstation is not necessary, although could speed things
up. Testing was performed on a 2014 iMac with a 4-core Intel i7 processor and
32GB of memory, although only a small fraction of this memory was needed.

Runtime scaling

With a ddRAD dataset sequencing on HiSeq 2500 paired-end with 150bp reads, including
48 individuals and generating 51,931 alignments, the following command was run:

mrbait -L wtd_run1.loci -T 4 -c 12 -l 150 -b 60 -K 1.0 -d 200 -F snp=1,10 -s tile=30

A total of 46,219 alignments passed filtering, of which 44,808 included a
conserved region long enough for target design. 27,102 targets passed filtering
(which was performed based on number of flanking SNPs) and were used to design
43,342 baits. Total runtime across 4 threads was 392 seconds.

Parallel processing is implemented where practical, primarily in steps
1 and 2. For step 1 (alignment parsing), it splits alignment files into groups,
to be parsed by each daughter process. During parsing, when an entry must be added
to the SQLite database, this cannot be performed in parallel, so a database lock
is implemented so that commits to the database are queued. However, the decrease
in runtime due to parallelization far outweighs this:

[image: _images/runtime.png]
Figure 3: Runtime scaling for Step 1 (most time-intensive step) with varying number of threads

The relationship of runtime to number of threads is similar for step 2 (target discovery),
as is the general scheme of preventing database conflicts caused by concurrent database
updates. These steps (1 and 2) are by far the most time consuming, although pairwise
alignment or BLAST searching in steps 3 or 5 can take considerable time depending on
dataset size.

Runtime (in seconds) and peak memory usage (total) for varying numbers of threads, with a ~50k loci RADseq dataset.:

	Threads

	Step 1(s)

	Step 2(s)

	Step 3(s)

	Step 4(s)

	Step 5(s)

	Total (s)

	Peak mem (MB)

	Step 1 mem (MB)

	1

	1182

	129

	1

	25

	3

	1342

	120

	80

	2

	591

	69

	1

	25

	3

	690

	260

	100

	3

	399

	49

	1

	25

	3

	478

	275

	110

	4

	320

	41

	1

	25

	3

	392

	300

	125

Memory Usage

Large alignments are processed piecemeal, with only a single alignment loaded at a time,
thus even large files can be processed without excessive memory requirements. The internal
data structure of mrbait relies on a file-based database (SQLite), making it very efficient
in terms of memory usage. Because of this, it should run on any normal (and reasonably
modern) desktop computer. Peak memory usage tends to be during step 2 (target discovery),
as at this step all consensus loci are scattered across threads- note that this also
means a slight increase in peak memory requirements as number of threads increases. See
Figure 4 for an example of how memory scales throughout the pipeline steps.

[image: _images/mem.png]
Figure 4: Memory usage throughout the pipeline (recorded for a 50k loci RADseq dataset).
Total memory usage (black) shows a peak of ~300Mb during step 2. Per-thread memory usage (blue)
cumulatively impacts total memory usage but drops to zero after step 2, as following steps do
not utilize parallel computation

 Acknowledgements

Acknowledgements

Computational resources for testing and benchmarking, as well as assembly of RADseq
data for testing MrBait, was provided by XSEDE allocations for JetStream:
Startup Allocation TG-BIO160058 to Michael E. Douglas, and Research Allocation
TG-BIO160065 to Marlis Douglas. Funding to generate RADseq data was provided
by by University of Arkansas Endowments (Bruker Professorship in Life Sciences
to MRD and 21st Century Chair in Global Climate Change Biology to MED).
Thanks are also extended to colleagues at the University of Arkansas: Zach D.
Zbinden for contributions to the code base, and Pam L. McDill for lab work
generating the test dataset.

We also would like to thank the Editors and 2 anonymous reviewers from Bioinformatics
for valuable suggestions to improve the software, its documentation, and the accompanying
manuscript submission.

 References

References

	Ali,O.A. et al. (2016) RAD Capture (Rapture): Flexible and Efficient Sequence-Based Genotyping. Genetics, 202, 389–400.

	Baird,N.A. et al. (2008) Rapid SNP Discovery and Genetic Mapping Using Sequenced RAD Markers. PLoS One, 3, e3376.

	Faircloth,B.C. (2017) Identifying conserved genomic elements and designing universal bait sets to enrich them. Methods Ecol. Evol.

	Hoffberg,S.L. et al. (2016) RADcap: sequence capture of dual-digest RADseq libraries with identifiable duplicates and reduced missing data. Mol. Ecol. Resour., 16, 1264–1278.

	Lemmon,A.R. et al. (2012) Anchored hybrid enrichment for massively high-throughput phylogenomics. Syst. Biol., 61, 727–744.

	McCormack,J.E. et al. (2012) Ultraconserved Elements Are Novel Phylogenomic Markers that Resolve Placental Mammal Phylogeny when Combined with Species Tree Analysis. Genome Res., 22, 746–754.

	Peterson,B.K. et al. (2012) Double Digest RADseq: An Inexpensive Method for De Novo SNP Discovery and Genotyping in Model and Non-Model Species. PLoS One, 7, e37135.

 Pipeline Description

Pipeline Description

The general process (summarized in figure below) is built on a relational database in
SQLite, populated, accessed, and parsed in Python. It takes a variety of input file
formats, and is written modularly such that adding additional capabilities (e.g. input
file formats, filtering schema) can be done without too much difficulty. The workflow is
divided into 5 steps, as follows:

	Alignments (provided as .xmfa, .loci, or .maf) or genomes (provided as .fasta, annotated with .vcf or .gff) will be used to build a consensus sequence of each locus.

	A sliding window will be applied to each consensus to find candidate targets for which baits could be designed

	Targets are then selected (if too close together, or only one allowed per locus), and filtered according to any number of specified filter (e.g. GC content, flanking SNPs, pairwise alignment)

	Passing targets are then parsed to design a putative set of baits

	Baits are then filtered according to selected criteria, and output as FASTA.

	The pipeline can be resumed and any steps iteratively re-visited by providing the SQLite database file (resulting in a significant reduction in runtime for successive runs)

[image: _images/pipeline.png]

 Getting Started

Getting Started

mrbait [https://github.com/tkchafin/mrbait] has been tested on Mac and Linux operating systems and is primarily supported on
those platforms. However, Windows users can easily install using the built-in
Linux subsystem for Windows 10.

In-development code can be found on the Github page: https://github.com/tkchafin/mrbait

If you find any issues with the program, please email me at tkchafin@uark.edu or
submit as an issue on Github [https://github.com/tkchafin/mrbait/issues], which can
also be used for submitting feature requests. When submitting bugs or issues, please
include input files, your command-line call, and any output MrBait produced to the screen
or output files.

Availability

Functioning releases can be found at:
https://github.com/tkchafin/mrbait/releases

Source code: https://github.com/tkchafin/mrbait

conda package: https://anaconda.org/tylerkchafin/mrbait

Dependencies

mrbait [https://github.com/tkchafin/mrbait] is written for Python3, and requires Python version >= 3.6.0. The recommended
method of acquiring Python and all other dependencies is via the Anaconda distribution,
as outlined in Section 3.3. A full list of dependencies is given below.

	Python [https://www.python.org/] >= 3.6

	SQLite3 [https://www.sqlite.org/index.html]

	BioPython [http://biopython.org/]

	Pandas [http://pandas.pydata.org/] >=0.22

	numpy [http://www.numpy.org/]

	pyVCF [https://pyvcf.readthedocs.io]

	networkx [https://networkx.github.io/]

mrbait can optionally use the following programs during bait development:

	blast [https://blast.ncbi.nlm.nih.gov/Blast.cgi]

	vsearch [https://github.com/torognes/vsearch]

For these utilities, please cite the following:
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009.
BLAST+: architecture and applications. BMC Bioinformatics. 1-:410. Doi:10.1186/1471-2105-10.421

Rognes R, Flouri T, Nichols B, Quince C, Mahe F. 2016. VSEARCH: A versatile and open
source tool for metagenomics. PeerJ. 4:e2584. Doi: 10.7717/peerj.2584

Installation

By far the easiest way to acquire and install mrbait [https://github.com/tkchafin/mrbait] is via conda [http://docs.continuum.io/conda/], a command line interface
for managing and installing packages. Download and install anaconda [http://docs.continuum.io/anaconda/install.html] for Python 3.6 here:
https://www.anaconda.com/download/. If you are wanting a minimal environment, or a faster
install, you can also use the Miniconda distribution (https://conda.io/miniconda.html) with
the same commands. After installation, be sure to test that conda is installed by typing
conda info, which will print information about your installation. Note, you may first need
to reload your bash environment by typing source ~/.bashrc or source ~/.bash_profile on Mac.
Assuming success, the installation process is then very straightforward:

#This command tells conda that the code and dependencies for mrbait can
#be found in ‘channels’ bioconda, conda-forge, and tylerkchafin.
conda install mrbait -c tylerkchafin -c bioconda -c conda-forge

#If you would like to instead install the latest development version, you can
#clone the github repository and
#install MrBait like so (assuming you have git installed):
git clone https://github.com/tkchafin/mrbait.git
cd mrbait
python ./setup.py install

You will then need to manually install both vsearch [https://github.com/torognes/vsearch] and blast [https://blast.ncbi.nlm.nih.gov/Blast.cgi], only if you install
directly from the GitHub source using the setup.py installation. These will be installed
for you if you used conda [http://docs.continuum.io/conda/].

Windows users: MrBait is installable using the built-in Linux subsystem for Windows 10.
I have only tested using the Ubuntu OS subsystem configuration but assume that other Linux
distros would work equally well. If you prefer, you can also use a Linux installation on a
virtual machine, or installed portably on a USB-attached drive [https://tutorials.ubuntu.com/tutorial/tutorial-create-a-usb-stick-on-ubuntu#0], although
this may impact performance. Contact me at tkchafin@uark.edu if you have any issues getting
mrbait [https://github.com/tkchafin/mrbait] installed, or feel free to launch an ‘Issue’ on the GitHub page.

HPC users: One of the reasons I recommend using conda to manage your Python environment,
is that it keeps your packages separate from the system environment, which you often will not
have permissions to modify. Anaconda will instead install your own local flavor of Python in
your home directory, where is will also install any additional packages you choose to add.

BLAST and VSEARCH: conda will also install both BLAST and VSEARCH and place them within
your conda environment. If you would like to manually manage versions of these programs, or
use an existing installation, you can provide the paths to those binaries using the –vsearch
and –blastn commands for mrbait [https://github.com/tkchafin/mrbait].

Running mrbait [https://github.com/tkchafin/mrbait]

Assuming you have completed the recommended conda [http://docs.continuum.io/conda/] install, mrbait [https://github.com/tkchafin/mrbait] and it’s Dependencies
should already be in your path and is now fully ready to go. You can verify successful
installation, and view the help menu, by typing:
mrbait -h

Instructions for bait design are provided as arguments (see Section 5 for thorough usage
instructions, and Section 8 for tutorials). For example, to generate baits of length
80, tiled across target regions with an overlap of 40 bases, from a Multiple Alignment
File (MAF) “example.maf”:

mrbait -M example.maf -b 80 -s tile=40

Or, to also filter for only alignments including 5 or more individuals, and
of length >500:

mrbait -M example.maf -b 80 -s tile=40 -l 500 -c 5

 Input files

Input files

This section describes the input file types accepted by MrBait.

Assembled genomes

mrbait [https://github.com/tkchafin/mrbait] only accepts genome assemblies formatted as FASTA. These can represent
contigs, scaffolds, or entire chromosomes. According to the FASTA specifications,
a sequence should begin with a header line, or short description (indicated by the
“>” symbol), followed by a second line containing sequence data. It does
not matter if the following lines are interleaved or on a single line, and any blank
lines in the file will be ignored, as will any leading or trailing whitespace.

An example FASTA-formatted sequence is given below.

	1
2
3
4
5
6
7
8
9

	>chr1.scaffold1
ATAGCTCGGCTACGTGATCGCGTGCTC-ATGCTAGCGCTNNNNNNNNATGATTGCTTTT
TGTGTGTGCAAGCACTGCCGRGCTACGCGCTACTGCCRCCTAGTATGTGTGGCCGCTAC
TAGTCCGCGCTAGCTtTtagatctcgtggcgccgcgcgcgtcgcacgatcgtacgcgcc
>chr1.scaffold2
ATCGTGCTGCGGCGCTGCCTCAGC…
…
…
…

Annotating genomes with VCF

mrbait [https://github.com/tkchafin/mrbait] also supports supplementing genomic sequences with coordinate-reference SNP
data (e.g. obtained from population-level sequencing) using the Variant Call Format [http://samtools.github.io/hts-specs/]:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	##fileformat=VCFv4.2
##FORMAT=<ID=GT,Number=1,Type=Integer,Description="Genotype">
##FORMAT=<ID=GP,Number=G,Type=Float,Description="Genotype Probabilities">
##FORMAT=<ID=PL,Number=G,Type=Float,Description="Phred-scaled Genotype Likelihoods">
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT SAMP001 SAMP002
chr1.scaffold1 48 rs11449 G A . PASS . GT 0/0 0/1
chr1.scaffold1 47 rs11449 T A . PASS . GT 0/0 0/1
chr1.scaffold2 1 rs84825 A T . PASS . GT:GP 0/1:. 0/1:0.03,0.97,0
…
…

It is important to note that the VCF format can communicate much more information
than mrbait [https://github.com/tkchafin/mrbait] will utilize. The CHROM and POS columns will be parsed to locate the
reference position for each SNP, and the REF and ALT columns to write a new consensus
base at that position using IUPAC ambiguity codes (e.g. C/T = Y). More functionality
will be added in future versions of mrbait [https://github.com/tkchafin/mrbait].

It is highly recommended you add variant data if it is available, as it will be used
both for finding adequately conserved regions for bait design, as well as for filtering
target regions for those which capture flanking SNPs.

NOTE: When using VCF, the REF column is ignored. Instead, the reference allele will be
taken from the FASTA reference provided. For cases when the reference allele is an N or
gap (-), you can choose to either retain the N/gap allele, OR attempt to override it
using the ALT alleles provided in the VCF for that position (–vcfALT)

Annotating genomes with GFF

mrbait [https://github.com/tkchafin/mrbait] can also make use of genomic features provided using the Generic Feature Format (GFF),
independently or in addition to any variant data provided via VCF. mrbait assumes that input
GFF files follow the version 3 GFF specification <https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md>_:

	1
2
3
4
5
6

	##gff-version 3
chr1.scaffold1 . gene 10 180 . + . ID=gene0001;Alias=targets
chr1.scaffold1 . mRNA 20 180 . + . ID=mrna0001;Parent=gene0001
chr1.scaffold1 . exon 10 128 . + . ID=tfbs00001;Parent=gene0001
…
…

Columns should be separated by tabs and defined according to the GFF3 standard (e.g.
column 1 contains the sequence ID). mrbait will use the sequence ID (column 1) to map
coordinates in GFF columns 4 and 5 to the reference provided in your FASTA file, thus
these identifiers must be identical. mrbait will also categorize features internally by
the type (e.g. “exon”) given in column 3, and by any alias assigned in the attributes
column (column 9). All other columns are ignored. You can use either type or alias to
tell mrbait [https://github.com/tkchafin/mrbait] to target those features for bait design.

If you are not targeting all of a single type (e.g. CDS, or exon), you can either pre-filter
your GFF file prior to loading, or you can annotate features of interest using the Alias
attribute.

Multiple genome alignments

mrbait [https://github.com/tkchafin/mrbait] reads two different input file types for multiple genome alignments. These can
be provided using the Multiple Alignment Format (MAF [https://genome.ucsc.edu/FAQ/FAQformat.html#format9.3]), or the eXtended Multi-FastA (XMFA [https://asap.genetics.wisc.edu/software/mauve/mauve-user-guide/mauve-output-file-formats.php]) formats.

The MAF format is output by several multiple alignment programs, including MAFFT [https://mafft.cbrc.jp/alignment/software/]
and Mugsy [http://mugsy.sourceforge.net/], and take the following general form:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	##maf version=1 scoring=tba.v8
tba.v8 (((human chimp) baboon) (mouse rat))
multiz.v7
maf_project.v5 _tba_right.maf3 mouse _tba_C
single_cov2.v4 single_cov2 /dev/stdin

a score=5062.0
s hg16.chr7 27699739 6 + 158545518 RAAAGAGATGCTAAGCCAATGAGTTGATGTCTCTCAATGTGTG
s panTro1.chr6 28862317 6 + 161576975 RAAAGAGATGCTAAGCCAATGAGTTGTTGTCTCTCAATGTGTG
s baboon 241163 6 + 4622798 TAAAGAGATGCTAAGCCAATGAGTTGTTGTCTCTRAATGTGTG
s mm4.chr6 53303881 6 + 151104725 TAAAGAGATGCTAAGCCAATGAGTTGTTGTCGCTCAATGTGTG
s rn3.chr4 81444246 6 + 187371129 taaggaGATGCTAAGCCAATGAGTTGTTGTCGCTCAATGTGTG

…
…
…

Comment lines (starting with “#”) are ignored by mrbait [https://github.com/tkchafin/mrbait]. Alignment blocks (considered
by mrbait [https://github.com/tkchafin/mrbait] to each represent different loci) are started with “a”, followed by sequence
lines starting with “s”. Source, strand, and coordinate positions are not informative for
mrbait [https://github.com/tkchafin/mrbait], nor are lines starting with other letters (which can be used in the MAF
format to communicate additional information about the preceding sequence, such as
quality scores).

The eXtended Multi-FastA (XMFA) format output by the multiple-genome aligner
MAUVE (which outputs it as “.alignment”) is an extension of the standard FASTA format
to allow alignment blocks from many different loci, with header lines representing
identifiers for the aligned sequence, and start-end coordinates representing the alignment
block location within the genome, followed by the sequence:

	1
2
3
4
5
6
7
8
9

	>1:1-230 +
ATAGC-NAATC--GC…
>2:210-440 -
ATTGGCCAATCCCC…
>3:3-230 +
TTA-CCAAGC--GC…
=
…
…

Alignment blocks are delimited by the “=” symbol. All alignment blocks are assumed
by mrbait [https://github.com/tkchafin/mrbait] to represent separate, discontinuous loci. Note that because
no individual ‘alignment block’ in the .xmfa file is guaranteed to contain the same
genome representatives, no reference coordinates are saved by mrbait. This means
that additional annotation via GFF or VCF cannot be added to whole-genome alignments
provided in .xmfa format.

Reduced representation data

Alignments from reduced-representation methods such as restriction-site associate
DNA sequencing methods (RADseq) can be input using the MAF or XMFA formats, or using
the “.loci” format output by the RADseq assembly pipeline pyrad [https://github.com/dereneaton/pyrad] or
its successor ipyrad [https://github.com/dereneaton/ipyrad]. This format shows individual
loci delimited by a line starting with “//” which features additional annotation of
variants and parsimony-informative sites:

	1
2
3
4
5
6
7
8

	>PopA001 GTGTGATAGTAGTGATGTATTTTATAATATATATTATCGGATAT……
>PopA002 GTGTGARAGTAGTGATGTATTTTATAATATATATTATCGGATAT……
>PopB001 GTGTGACAGTAGTGATGTATTTTATAATATATATTATCGGATAT……
>PopB002 GAGTGATAGTAGTGATGTATTTTATAATATATATTATCGGATAT……
// * * |1
…
…
…

mrbait ignores annotation information (since it parses variants anyways to generate
a consensus sequence), and only uses the “//” delimiter to distinguish between alignment
blocks. Creating a .loci file from other formats can be accomplished relatively easily.
For example, a series of separate alignments (each as .fasta), could be converted to the
.loci format using the following bash command:

for file in `ls example*.fasta`; do
 awk 'BEGIN{ORS=""}$1~/^\>/{print $01"\t";next}{print $0"\n"}' $file
 >> example.loci;
 echo "//" >> example.loci;
done

 Usage options

Usage options

mrbait [https://github.com/tkchafin/mrbait] reads all options and inputs using command-line arguments provided
after the program name. For a quick look at all options from the command line,
call the help menu by typing mrbait -h from the terminal.

Note that options requiring a floating point number (e.g. -q) allow inputs
from 0.0 to 1.0, and options requiring an integer (e.g. -c) allow inputs ranging
from 1 to infinity.

Main Parameters

General options

	-r, --resume

	Resume: This flag is used to tell mrbait if you would like to resume work
following a particular step. Use this option in conjunction with the
–db flag to continue the pipeline if you would like to re-perform
filtering steps without needing to re-load and parse alignments

 Output Files

Output Files

Final output of baits will be formatted as FASTA and named $out_baits.fasta
(where $out is defined using the -o/–out flag). When the -t/–print_tr option is in
use, targets will also be output as $out_targets.fasta, with an additional field
in the header indicating if these targets passed or failed target selection and filtering.

By default, baits are reported with any ambiguity sequences included (e.g. as a
consensus sequence) like so:

	1
2
3
4
5
6
7

	>Locus1_Target4_Bait1
ATGTAATRAGGTATATG……
>Locus1_Target4_Bait2
TATGAATGTCGCGCGAT……
…
…
…

If using the -x/–expand option, ambiguities will be reported as all combinations, like so:

	1
2
3
4
5
6
7
8
9

	>Locus2_Target4_Bait1.1
ATGTAATAAGGTATATG……
>Locus2_Target4_Bait1.1
ATGTAATGAGGTATATG……
>Locus1_Target4_Bait2.1
TATGAATGTCGCGCGAT……
…
…
…

Baits can also be printed as reverse complement. For example, if the –expand option was
specified, in addition to –strand both:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	>Locus2_Target4_Bait1.1
ATGTAATAAGGTATATG……
>Locus2_Target4_Bait1.1_revcomp
TACATTATTCCATATAC……
>Locus2_Target4_Bait1.1
ATGTAATGAGGTATATG……
>Locus2_Target4_Bait1.1_revcomp
TACATTACTCCATATAC ……
>Locus1_Target4_Bait2.1
TATGAATGTCGCGCGAT……
>Locus1_Target4_Bait2.1_revcomp
ATACTTACAGCGCGCTA……
…
…

mrbait [https://github.com/tkchafin/mrbait] will also produce a .sqlite file (e.g. $out.sqlite) which can be used with
the –resume flag to restart the pipeline at different stages- for example to
re-perform bait filtering with different options. This stores the complete database,
including all consensus loci parsed from the alignment input files, all targets, and
all bait sequences (including those which failed filtering) and can be used independently
with your own SQLite queries.

 Benchmarking and Hardware Requirements

Benchmarking and Hardware Requirements

Use of an HPC or powerful workstation is not necessary, although could speed things
up. Testing was performed on a 2014 iMac with a 4-core Intel i7 processor and
32GB of memory, although only a small fraction of this memory was needed.

Runtime scaling

With a ddRAD dataset sequencing on HiSeq 2500 paired-end with 150bp reads, including
48 individuals and generating 51,931 alignments, the following command was run:

mrbait -L wtd_run1.loci -T 4 -c 12 -l 150 -b 60 -K 1.0 -d 200 -F snp=1,10 -s tile=30

A total of 46,219 alignments passed filtering, of which 44,808 included a
conserved region long enough for target design. 27,102 targets passed filtering
(which was performed based on number of flanking SNPs) and were used to design
43,342 baits. Total runtime across 4 threads was 392 seconds.

Parallel processing is implemented where practical, primarily in steps
1 and 2. For step 1 (alignment parsing), it splits alignment files into groups,
to be parsed by each daughter process. During parsing, when an entry must be added
to the SQLite database, this cannot be performed in parallel, so a database lock
is implemented so that commits to the database are queued. However, the decrease
in runtime due to parallelization far outweighs this:

[image: _images/runtime.png]
Figure 3: Runtime scaling for Step 1 (most time-intensive step) with varying number of threads

The relationship of runtime to number of threads is similar for step 2 (target discovery),
as is the general scheme of preventing database conflicts caused by concurrent database
updates. These steps (1 and 2) are by far the most time consuming, although pairwise
alignment or BLAST searching in steps 3 or 5 can take considerable time depending on
dataset size.

Runtime (in seconds) and peak memory usage (total) for varying numbers of threads, with a ~50k loci RADseq dataset.:

	Threads

	Step 1(s)

	Step 2(s)

	Step 3(s)

	Step 4(s)

	Step 5(s)

	Total (s)

	Peak mem (MB)

	Step 1 mem (MB)

	1

	1182

	129

	1

	25

	3

	1342

	120

	80

	2

	591

	69

	1

	25

	3

	690

	260

	100

	3

	399

	49

	1

	25

	3

	478

	275

	110

	4

	320

	41

	1

	25

	3

	392

	300

	125

Memory Usage

Large alignments are processed piecemeal, with only a single alignment loaded at a time,
thus even large files can be processed without excessive memory requirements. The internal
data structure of mrbait relies on a file-based database (SQLite), making it very efficient
in terms of memory usage. Because of this, it should run on any normal (and reasonably
modern) desktop computer. Peak memory usage tends to be during step 2 (target discovery),
as at this step all consensus loci are scattered across threads- note that this also
means a slight increase in peak memory requirements as number of threads increases. See
Figure 4 for an example of how memory scales throughout the pipeline steps.

[image: _images/mem.png]
Figure 4: Memory usage throughout the pipeline (recorded for a 50k loci RADseq dataset).
Total memory usage (black) shows a peak of ~300Mb during step 2. Per-thread memory usage (blue)
cumulatively impacts total memory usage but drops to zero after step 2, as following steps do
not utilize parallel computation

 Acknowledgements

Acknowledgements

Computational resources for testing and benchmarking, as well as assembly of RADseq
data for testing MrBait, was provided by XSEDE allocations for JetStream:
Startup Allocation TG-BIO160058 to Michael E. Douglas, and Research Allocation
TG-BIO160065 to Marlis Douglas. Funding to generate RADseq data was provided
by by University of Arkansas Endowments (Bruker Professorship in Life Sciences
to MRD and 21st Century Chair in Global Climate Change Biology to MED).
Thanks are also extended to colleagues at the University of Arkansas: Zach D.
Zbinden for contributions to the code base, and Pam L. McDill for lab work
generating the test dataset.

We also would like to thank the Editors and 2 anonymous reviewers from Bioinformatics
for valuable suggestions to improve the software, its documentation, and the accompanying
manuscript submission.

 References

References

	Ali,O.A. et al. (2016) RAD Capture (Rapture): Flexible and Efficient Sequence-Based Genotyping. Genetics, 202, 389–400.

	Baird,N.A. et al. (2008) Rapid SNP Discovery and Genetic Mapping Using Sequenced RAD Markers. PLoS One, 3, e3376.

	Faircloth,B.C. (2017) Identifying conserved genomic elements and designing universal bait sets to enrich them. Methods Ecol. Evol.

	Hoffberg,S.L. et al. (2016) RADcap: sequence capture of dual-digest RADseq libraries with identifiable duplicates and reduced missing data. Mol. Ecol. Resour., 16, 1264–1278.

	Lemmon,A.R. et al. (2012) Anchored hybrid enrichment for massively high-throughput phylogenomics. Syst. Biol., 61, 727–744.

	McCormack,J.E. et al. (2012) Ultraconserved Elements Are Novel Phylogenomic Markers that Resolve Placental Mammal Phylogeny when Combined with Species Tree Analysis. Genome Res., 22, 746–754.

	Peterson,B.K. et al. (2012) Double Digest RADseq: An Inexpensive Method for De Novo SNP Discovery and Genotyping in Model and Non-Model Species. PLoS One, 7, e37135.

 Index

Index

 <no title>

_images/graph.png

_images/mem.png
200
20

(@w) pasn sowauw

200 %0 W0

time (in seconds)

100

_static/ajax-loader.gif

_images/pipeline.png
Aligned Genomes

RAD Alignments

Genome + Variants

Annotated Genome

at or nfa oct rasta + et rasta + g
~ Filerby: g Extract GFF Elementy)
“ength
aincov *
Ecract consensussequence,
variants, and masked regions Loco-1 Locio-2 Locio-s
(rpetitve) or al alignments, Lo) m N :
Pt i A P t H— t
datbse. Find conserved regons
it iding indowand
retin‘argels i tabic
RGOl RecTo-2 Resto-s Rectoe ReID-s RecID- Usercan ceins
Window length
Window s dis

'
|
Users can optionally define |
a maximum number of targets |
perlocus,and resolve conficts |
randomlyor using nformation
fom flanking sequence region |
|
'

REGID=3

—

Number of flanking SNPs.

REGID=4

'

Distance from repeat

R

(e amount of polymorphism) s s s f
(TagetRegionFiering _ REoIo-1 ReGio-s memoos
| Target Region Filtering
1
1 Pairwise alignment BLASTN By attribute Random

Build graph ofall 1 o =
VSEARCH
“conflicts'and | ery coverage ~Only keep hits G/C content .
resolveby €| CQuery coverag “Remove hits “Nflanking SNPs . retain 500 targets
minimizing dges | -Remove ambiguous Tota length

Baits are designed either by
tiling, or anchored by position
(eg.centered, or terminal)

REGID=1

REGID=5

‘
1
|
I Pairwise alignment
|
!
]

Byatribute Random
Buildgraph ofall P = <5

“confictsand EACH e “Onlykeep hits "G/C content

roveby €| Queycoverige “Remove its ‘Nfankingsps || eg-retsinS00targets
minimizng edoes | “Remove ambiguous Totalength

SBAIT_1

ATTGTGGCTGCTCGTCGCTAGTCGCGCGCTGAATCAATATTATATAACTCCGCCGTTGTGTG

SBAT 2
GGGTGTATATAGATCGATGCTAGCTAGCTAGCATCGATCGATCGTAGCTAGCACGCGGGCC.

BAIT 3

AATTGGGCTGCTGCTCGCGCTTTCCGATGATCGATCGATGCTAGCTGACTGACAATTTTTA

SBATN

ATCGACTGATCGATGCTCGACATCATCACACTAGTCGTTGCTGTGCTAGCTAGCTATCGATC

~Allowable masked bases
~Allowable ‘N bases
“Allowable SNPs i target
“Min/ max target length

Any number of fitering
steps can be applied,

for example targets

can be BLAST searched
againsta contaminant
‘genome, or align pairwise
to remove duplicates

Any number of fitering
steps can be applied,

for example targets

can be BLAST searched
againsta contaminant
‘genome, or align pairwise
to remove duplicates

_images/runtime.png
T T T T
000l 008 009 00

(s) | deys Joy awpuny

15 20 25 30 35 40

1.0

Number of Threads

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 mrbait: Universal identification and design of targeted-enrichment capture probes

 		
 Introduction

 		
 Pipeline Description

 		
 Getting Started

 		
 Availability

 		
 Dependencies

 		
 Installation

 		
 Running mrbait

 		
 Input files

 		
 Assembled genomes

 		
 Multiple genome alignments

 		
 Reduced representation data

 		
 Usage options

 		
 Main Parameters

 		
 Filtering using vsearch

 		
 Filtering using blast

 		
 Output Files

 		
 Benchmarking and Hardware Requirements

 		
 Runtime scaling

 		
 Memory Usage

 		
 Acknowledgements

 		
 References

 		
 Pipeline Description

 		
 Getting Started

 		
 Availability

 		
 Dependencies

 		
 Installation

 		
 Running mrbait

 		
 Input files

 		
 Assembled genomes

 		
 Annotating genomes with VCF

 		
 Annotating genomes with GFF

 		
 Multiple genome alignments

 		
 Reduced representation data

 		
 Usage options

 		
 Main Parameters

 		
 General options

 		
 Input Options

 		
 Alignment filtering/ consensus options (use with -M, -X, -L)

 		
 General Bait Design Options

 		
 Target Region Options

 		
 Bait Selection Options

 		
 Output Options

 		
 Filtering using vsearch

 		
 vsearch Options

 		
 Graph-based conflict resolution

 		
 Filtering using blast

 		
 Output Files

 		
 Benchmarking and Hardware Requirements

 		
 Runtime scaling